CSE311 Microwave Engineering

LEC (04) Electron Motion in Tubes

Assoc. Prof. Dr. Moataz Elsherbini

motaz.ali@feng.bu.edu.eg

LECTURE OUTLINES

Motion of an electron in Magnetic field only

Trajectory of particle Motion in "B" Field only

Motion of an electron in both electric and Magnetic field

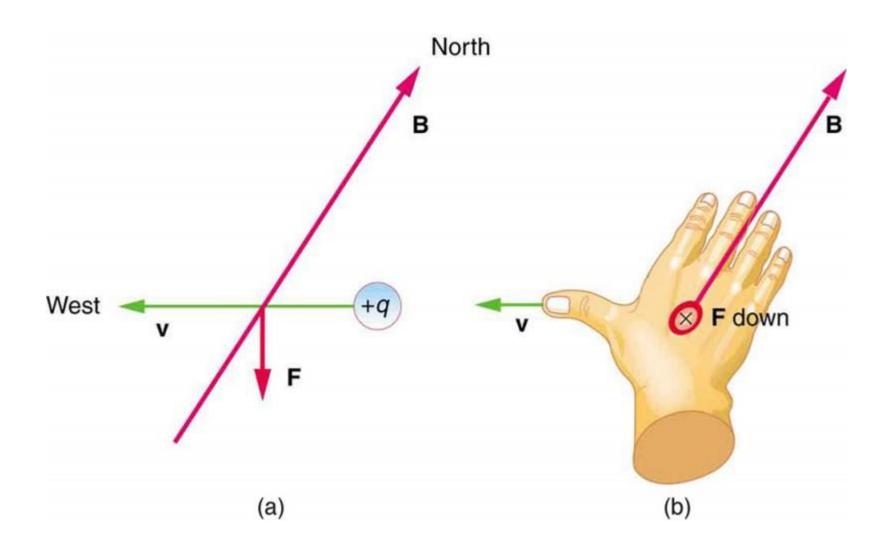
Motion in cylindrical coordinates

Motion of an electron in B fields

- ☐ Firstly, assume there is no electric field and there is only magnetic field effect (B)
- ☐ Assume that magnetic field is (B), Normal to the page and towards inside.
- ☐ If there is no magnetic field, the electron will move in a straight motion.

 But due to magnetic field it will move in a circular trajectory.
- \square Due to the magnetic field, the particle (electron / or proton) affected by a force excreted on it due to the magnetic field (\overrightarrow{F})
- \square Using right hand rule (R.H.R) $\rightarrow \overrightarrow{F}$ direction can be determined
- ☐ Using Lorentz rule we can estimate the force:

$$\vec{F} = qv \times \vec{B}$$



- ☐ The magnetic force doesn't change the velocity of the moving particle, it only changes the (direction).
- \Box The trajectory of the electron/proton is circular motion, so we can estimate the velocity components $(\boldsymbol{v}_x, \boldsymbol{v}_y, \boldsymbol{v}_z)$ at any time.
- ☐ It is requires to calculate:
 - \triangleright The radius of the motion (R)
 - \triangleright The periodic cyclic time (cyclotron) of the motion (T_p)
- \Box starting from :

$$|\vec{F}| = |qv \times \vec{B}| = qvBsin\theta$$

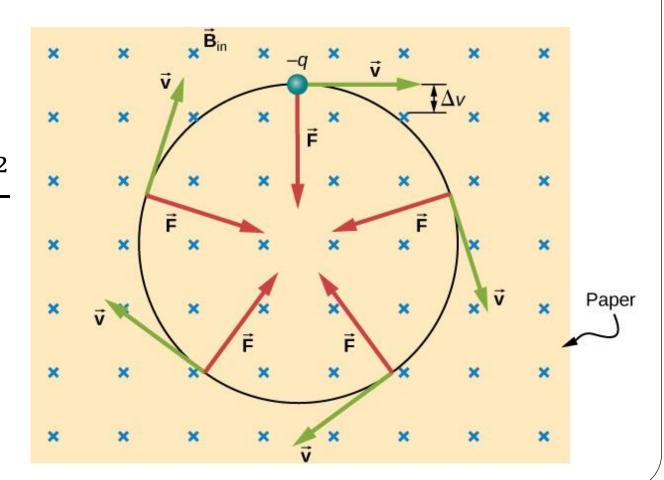
☐ At point (1) of the shown figure (expected circular motion)

$$> \theta = 90^{\circ}$$
,

$$\triangleright |\vec{F}| = qvBsin\theta = qvBsin90^o = qvB$$

$$\gt$$
 But $|\vec{F}| = \frac{mv^2}{R}$

> So,
$$qvB = \frac{mv^2}{R}$$



Now:

> Raduis of Cicle
$$(R) = \frac{mv}{qB}$$

$$ightharpoonup Periodic Time (T_p) = \frac{distance}{velocity}$$

$$=\frac{2\pi R}{v}$$

$$= \frac{2\pi}{v} \times \frac{mv}{qB}$$

$$(\mathbf{T}_{\boldsymbol{p}}) = \frac{2\pi m}{qB}$$

Trajectory of particle Motion in "B" Field only

Case (1):

- NO Electric field
- \triangleright The magnetic field is in \vec{x} direction only
- \triangleright The initial velocity is in \vec{z} direction

 \Box Firstly, assume that the magnetic field is in \vec{x} direction only and the initial velocity is in \vec{z} direction



- \square Assume $v_{ox} = v_{oy} = 0$, $v_{oz} > 0$
- \square Assume initial position is at origin $x_o = y_o = z_o$

$$\square$$
 velocity vector $\vec{v} = v_x \overrightarrow{a_x} + v_y \overrightarrow{a_y} + v_z \overrightarrow{a_z}$

$$\Box \vec{F} = q(v_x \overrightarrow{a_x} + v_y \overrightarrow{a_y} + v_z \overrightarrow{a_z}) \times (B_x \overrightarrow{a_x})$$

$$ec{F} = egin{bmatrix} \overrightarrow{a_x} & \overrightarrow{a_y} & \overrightarrow{a_z} \ v_x & v_y & v_z \ B_x & 0 & 0 \end{bmatrix}$$

$$\vec{F} = q(B_x v_z \overrightarrow{a_y} - B_x v_y \overrightarrow{a_z})$$

$$\vec{F} = m \frac{dv_x}{dx} \overrightarrow{a_x} + m \frac{dv_y}{dy} \overrightarrow{a_y} + m \frac{dv_z}{dz} \overrightarrow{a_z}$$

$$m\frac{dv_x}{dx}=0$$

$$v_{x} = \int \frac{dv_{x}}{dx} dx$$

$$v_x = \text{Constant}$$

At
$$t = 0$$
, $v_{ox} = 0$, so const. = 0 and

so
$$v_x=0$$

$$x = \int v_x dx = \text{constant}$$

At
$$t = 0$$
, $x_o = 0$, so const. = 0 and

$$m \frac{dv_y}{dv} = qB_x v_z \rightarrow (1)$$

$$m\frac{dv_z}{dz} = -qB_x v_y \rightarrow (2)$$

 \Box Differentiate (1)

$$m\frac{d^2v_y}{dt^2} = qB_x\frac{dv_z}{dz}$$

 \square Substitute in (2)

$$m\frac{d^2v_y}{dt^2} = qB_x(-\frac{q}{m}B_xv_y)$$

$$\frac{d^2v_y}{dt^2} + \frac{q^2B_x^2}{m^2}v_y = 0$$

$$\frac{d^2v_y}{dt^2} + \omega^2v_y = 0 \implies \omega^2 = \frac{q^2B_x^2}{m^2} \text{ or } \omega = \frac{qB_x}{m}$$

It is a differential equation, has a solution of:

$$v_{v}(t) = A \sin \omega t + D \cos \omega t$$

$$\rightarrow$$
 At t = 0, $v_{oy}(t)=0 \&\& D=0$

$$\rightarrow$$
 So $v_v(t) = A \sin \omega t$

$$v_{v}(t) = A \sin \omega t$$

By differentiation:

$$\frac{dv_y(t)}{dt} = \omega A \cos \omega t$$

we know that
$$m \frac{dv_y}{dy} = qB_x v_z \&\& \omega = \frac{qB_x}{m}$$

$$m(\frac{qB_x}{m})$$
A cos $\omega t = qB_x v_z$

So A cos
$$\omega t = v_z$$

A cos
$$\omega t = v_z$$

Now, at
$$t = 0$$
, $A = v_{oz}$

So,
$$v_y(t) = v_{oz} \sin \omega t$$

$$\rightarrow$$
 To calculate v_Z

we know that
$$m \frac{dv_y}{dy} = qB_x v_z$$

$$m(\omega v_{oz} \cos \omega t) = qB_x v_z$$

$$v_z = \frac{m\omega v_{oz} \cos \omega t}{qB_x} = \frac{m\frac{qB_x}{m}v_{oz} \cos \omega t}{qB_x} = v_{oz} \cos \omega t$$

$$x = 0$$

$$v_x = 0$$

$$v_y(t) = v_{oz} \sin \omega t$$

$$v_z = v_{oz} \cos \omega t$$

Now we wanna calculate Z and y

Now we wanna calculate Z and y

$$v_y = \frac{dy}{dt} \qquad \qquad y = \int v_y \, dt$$

$$y = \int v_{oz} \sin \omega t \ dt = \frac{-v_{oz}}{\omega} \cos \omega t + C$$

At t = 0, $y_0 = 0$, and

$$0 = \frac{-v_{oz}}{\omega} \cos 0 + C \rightarrow C = \frac{v_{oz}}{\omega}$$

$$y = \int v_{oz} \sin \omega t \ dt = \frac{-v_{oz}}{\omega} \cos \omega t + \frac{v_{oz}}{\omega} = \frac{v_{oz}}{\omega} (1 - \cos \omega t)$$

Or it can be re-written

$$y - \frac{v_{oz}}{\omega} = \frac{-v_{oz}}{\omega} \cos \omega t \implies (I)$$

Now we wanna calculate Z and y

$$v_z = \frac{dz}{dt}$$
 $z = \int v_z dt$

$$z = \int v_{oz} \cos \omega t \ dt = \frac{v_{oz}}{\omega} \sin \omega t + C$$

At
$$t = 0$$
, $z_0 = 0$, and

$$0 = \frac{v_{oz}}{\omega} \sin 0 + C \rightarrow C = 0$$

$$z = \int v_{oz} \cos \omega t \ dt = \frac{v_{oz}}{\omega} \sin \omega t$$

$$z = \frac{v_{oz}}{\omega} \sin \omega t$$

$$y - \frac{v_{oz}}{\omega} = \frac{-v_{oz}}{\omega} \cos \omega t$$

$$(y - \frac{v_{oz}}{\omega})^2 + z^2 = (\frac{-v_{oz}}{\omega} \cos \omega t)^2 + (\frac{v_{oz}}{\omega} \sin \omega t)^2 = (\frac{v_{oz}}{\omega})^2$$

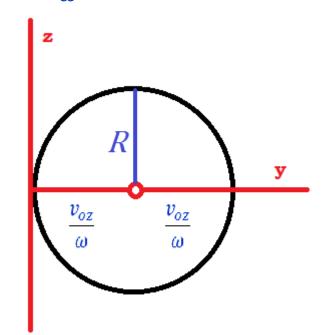
$$= \Rightarrow (y - \frac{v_{oz}}{\omega})^2 + z^2 = (\frac{v_{oz}}{\omega})^2$$

So the trajectory is circular motion with radius $\frac{v_{oz}}{\omega}$

$$R = \frac{v_{oz}}{\omega} = \frac{v_{oz}}{\frac{qB_{x}}{m}}$$

$$R = \frac{mv_{oz}}{qB_{x}}$$

$$T = \frac{2\pi R}{v_{oz}} = \frac{2\pi \frac{mv_{oz}}{qB_{x}}}{v_{oz}} = \frac{2\pi m}{qB_{x}}$$



Case (2) :

- NO Electric field
- \triangleright The magnetic field is in \vec{x} direction only
- \triangleright The initial velocity is in \vec{x} and \vec{z} direction

> Do it Yourself to reach:

$$v_y = v_{oz} \sin \omega t$$

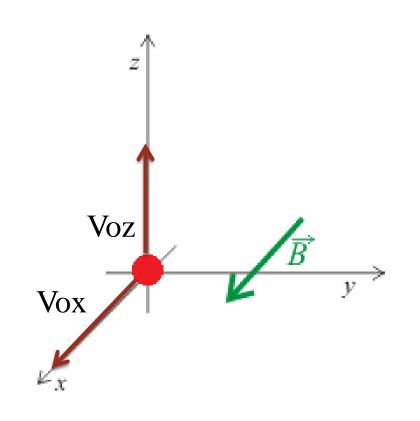
$$v_z = v_{oz} \cos \omega t$$

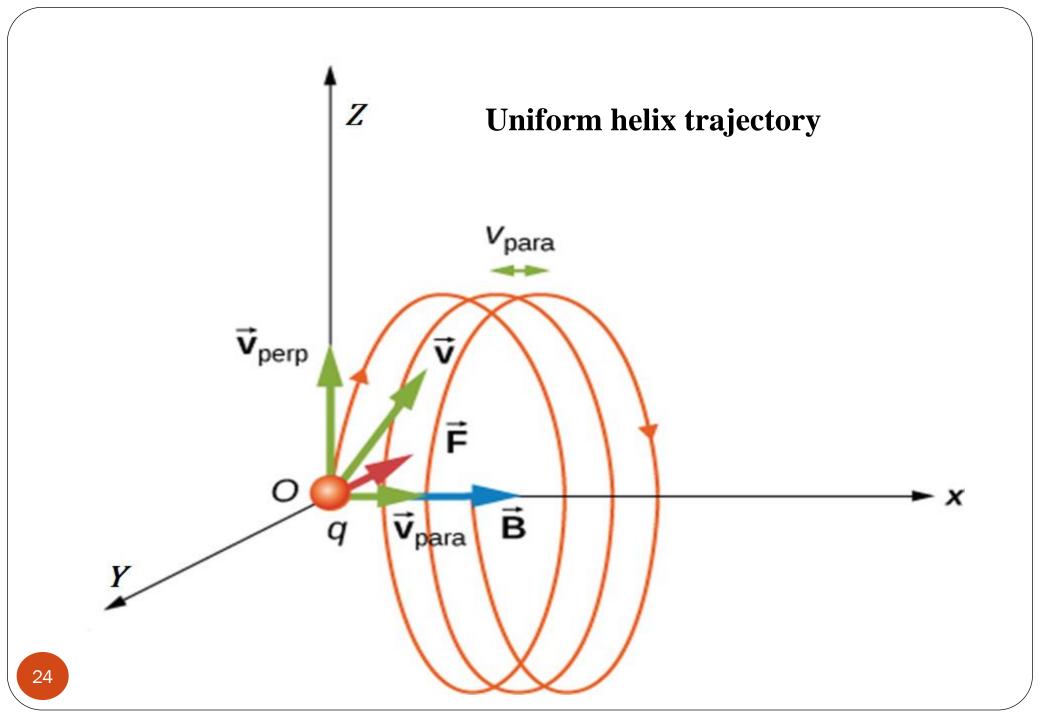
$$v_x = v_{ox}$$

$$x = v_{ox}t$$

$$z = \frac{v_{oz}}{\omega} \sin \omega t$$

$$y - \frac{v_{oz}}{\omega} = \frac{-v_{oz}}{\omega} \cos \omega t$$





Case (3)

- \triangleright Uniform Electric field \vec{x} direction only
- \triangleright The magnetic field is in \vec{x} direction only
- \triangleright The initial velocity is in \vec{z} direction

> Do it Yourself to reach:

$$v_y = v_{oz} \sin \omega t$$

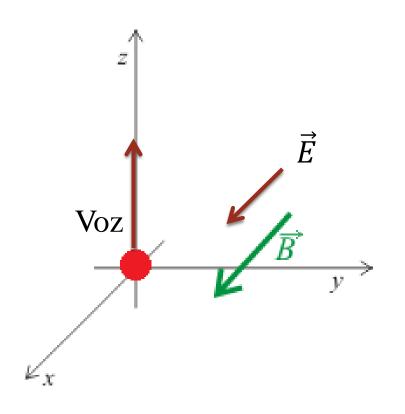
$$v_z = v_{oz} \cos \omega t$$

$$v_{x} = \frac{qE}{m} t$$

$$x = \frac{qE}{2m} t^2$$

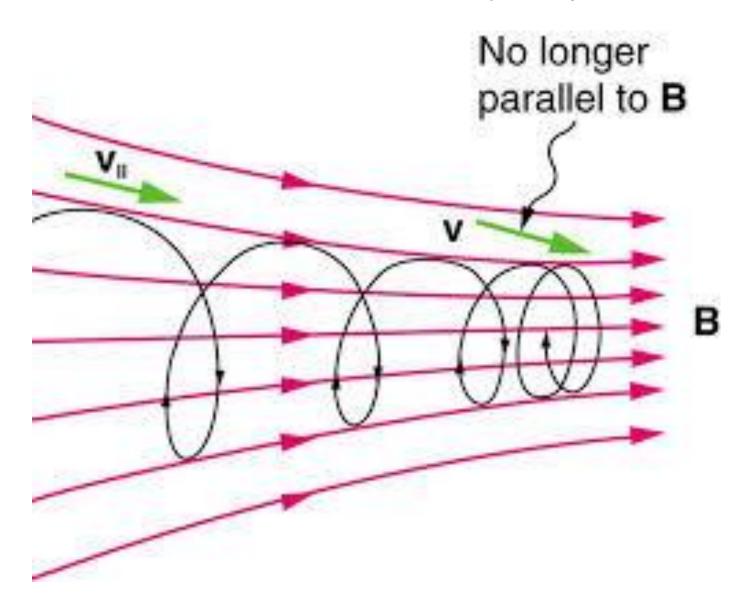
$$z = \frac{v_{oz}}{\omega} \sin \omega t$$

$$y - \frac{v_{oz}}{\omega} = \frac{-v_{oz}}{\omega} \cos \omega t$$



$$\vec{F} = q(\vec{E} + v \times \vec{B})$$

Non uniform helix trajectory



Case (4)

- \triangleright Uniform Electric field $\overrightarrow{-x}$ direction only
- \triangleright The magnetic field is in \vec{x} direction only
- \triangleright The initial velocity is in \vec{x} and \vec{z} direction

Do it Yourself to reach:

$$v_z = v_{oz} \cos \omega t$$

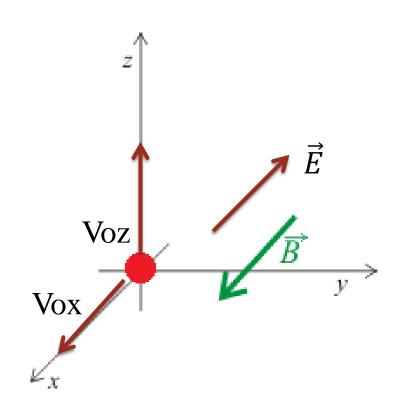
$$v_{x} = \frac{-qE}{m} t + v_{ox}$$

$$v_y = v_{oz} \sin \omega t$$

$$x = \frac{-qE}{2m} t^2 + v_{ox}t$$

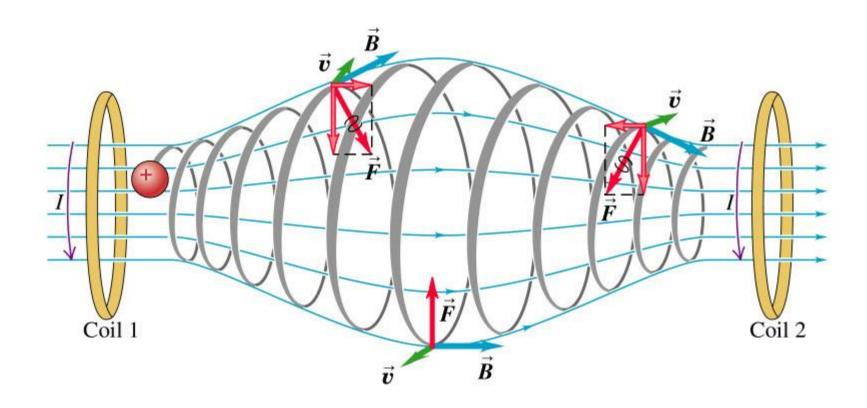
$$z = \frac{v_{oz}}{\omega} \sin \omega t$$

$$y - \frac{v_{oz}}{\omega} = \frac{-v_{oz}}{\omega} \cos \omega t$$



$$\vec{F} = q(\vec{E} + v \times \vec{B})$$

Helical Motion in X and circular in YZ



Project

Thank, you for your attention